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Numerical machine calculations combining the Monte Carlo and molecular dynamics 
methods are used to study the diffusion behavior in the two versions of Ehrenfest’s 
wind-tree model recently studied by Hauge and Cohen. The mean-square displacement 
<AP) is found to be the most suitable variable for precise calculation, and its behavior 
as a function of time tends to confirm the findings of Hauge and Cohen: Namely, when 
the oriented square “trees” are allowed to overlap one another, the diffusion is “ab- 
normal,” in that <A?> increases less rapidly than linearly in the time, so that the usual 
diffusion constant vanishes. When the oriented square “trees” are hard, i.e., non- 
overlapping, the diffusion appears to be normal. 

1. INTRODUCTION 

Hauge and Cohen [I, 2, 31 recently used Ehrenfest’s “wind-tree model” as a 
testing ground for the resummation procedures which are required to remove 
various divergences appearing in the theoretical calculation of the density depen- 
dence of transport coefficients. In this two-dimensional Lorentz diffusion model 
the “wind” is a point particle (one or more; the wind-particles do not interact 
with one another) which moves through a random array of massive square-shaped 
scatterers called “trees,” which are oriented with one of their diagonals parallel 
to the initial direction of the wind-particle. The reflection of the (zero mass) 
wind-particle off the edges of the massive square particles is specular so that only 
four different velocities arise. Figure 1 shows an example taken from one of the 
Monte Carlo calculations of the present investigation, for a periodic “forest” of 
32 trees. 

Hauge and Cohen consider two versions of the model, which we designate here 
as “NOV” and “OV.” NOV stands for “nonoverlapping,” meaning that in this 
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case the square trees are “hard” with respect to their mutual interactions as well as 
with respect to their reflection of the wind-particle. OV stands for “overlapping”; 
in this case the square trees are mutually noninteracting, but still “hard” in their 
reflection of the wind-particle. Figure 1, clearly, is an example of the OV case. 
The most striking result obtained by Hauge and Cohen is the qualitatively different 
behavior found for the diffusion coefficient in the two cases. In the NOV case they 
were able to resum all the first-order density corrections to the Boltzmann, dilute- 
gas diffusion coefficient into a finite result. As a consequence they refer to this 
version of the model as exhibiting “normal” diffusion. In contrast, in the OV case 
they were left with a residual divergence in the reciprocal of the diffusion constant, 

FIG. 1. The OV wind-tree for a periodic “forest” of 32 trees at 7 = 2.0. A wind-particle 
trajectory begins at the point 0 which is partly obscured by the tip of the arrow to the right of 
tree 9 ; the initial velocity is to the left. The trajectory was terminated eighty collisions later at the 
point x on tree 15. The figure is drawn for convenience in the toroidal version of periodic bound- 
ary conditions, but dr(t) is calculated for the infinite checkerboard version. Note that several 
portions of the trajectory are class III retracing events in the Hauge-Cohen classification. 
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i.e., a vanishing diffusion coefficient or, equivalently, a mean square-displacement of 
the wind-particle increasing Iess rapidly than linearly with the time. This behavior 
they quite reasonably designated as “abnormal” diffusion. 

The Monte Carlo investigation described here was undertaken with the objective 
of looking for this qualitative difference in the NOV and OV behaviors. The 
advantage of Monte Carlo methods in statistical mechanics (see, for example the 
review by Wood [4]) is that they are in a sense “exact” within their associated 
statistical error, aside from certain caveats concerning small system sizes and 
random number generating procedures. The Hauge and Cohen calculation was 
necessarily limited to terms which are first-order density corrections (after 
resummation) to the dilute gas coefficient. It was conceivable, though it seemed 
unlikely, that higher-order (resummed) terms in the density might somehow cancel 
the abnormal OV behavior; if so, we expected to be able to detect such a behavior 
in the Monte Carlo calculation. We give here a rather brief preliminary summary 
of some of our results, which strongly support the conclusions of Hauge and Cohen. 

2. COMPUTATIONAL METHOD 

Dynamical Variables 

Following Hauge and Cohen [3], we begin with the expression for the mean- 
square displacement of the wind-particle as a function of time, 

4) = <~W>, 
(2.1) 

h(t) = r(t) - r(O), 

where r(t) denotes the position of the wind-particle at time t, and the angular 
brackets denote an appropriate (depending upon whether the OV or NOV case is 
under consideration) petit-canonical ensemble average over the initial position r(0) 
of the wind-particle and over the 2N-dimensional space QN = (Q1, QZ ,..., QN} of 
the position vectors Qi of the scattering trees. Because of the characteristic conser- 
vation of the magnitude of the wind-particle velocity in our Lorentz gas, we omit 
any explicit averaging over a velocity distribution. As will be seen, our periodic 
system is isotropic in the four velocity directions, so that the initial wind-particle 
velocity may be taken either always in a given fixed one of the four possible 
directions, or we may average over a uniform distribution of the four possibilities. 
In most of our Monte Carlo calculations we follow the latter procedure. It will be 
convenient to follow the standard convention of writing r and II in place of r(0) 
and u(O), and r(t) and u(t) explicitly whenever the quantities at a time t other than 
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zero are intended. By using the time-translation invariance of the canonical average, 
we obtain from (2.1) 

dA(t)/dt = 2 J” dt’(u * u(f)), 
0 

(2.2a) 

where u(t) = dr(t)/dt is the velocity of the wind-particle. For later convenience we 
define the “diffusion function” 

B(t) = 4 1” dt’(u ’ u(P)), (2.2b) 
JO 

so that 

dA(t)/dt = 49(t). (2.3) 

In normal diffusion processes the integral in (2.2b) converges as t -+ cc to a value 
greater than zero, and Q( co) is called the diffusion coefficient, since from (2.3) there 
then follows the Einstein relation 

4 - 4‘qco)t. (2.4) 

It is also convenient to introduce the normalized velocity-autocorrelation function 

V(t) = u-yu * u(t)), 

u = 1 u / = / u(t)1 
(2.5) 

and then write (2.2b) as 

B(t) = $2 f dt’V(t’) = $(u * Ar(t)). G’.6) 
0 

We will be dealing here with Monte Carlo-molecular dynamics estimates of the 
quantities V(t), 9(t), and A(t), but for computational purposes it is convenient 
to (1) remove the divergence of 9( cc) in the low-density limit due to the divergence 
of the mean free path; (2) remove the unbounded increase of A(t) with t; and 
(3) transform to dimensionless variables. For this purpose we introduce the low- 
density (Boltzmann) mean free path 

I = 1/(2na), (2.7) 

where n = N/V is the number density of a petit-canonical ensemble with N 
scattering trees confined to an area V, and a is the half-diagonal of the square trees. 
We then define a dimensionless time variable 

t* = tuli, (2.8) 
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which is simply the time measured in units of the mean-free flight time in the 
low-density approximation. Our dimensionless dynamical variables are then defined 
as 

C(t*) = %7(t) = u-yu * ll(Zt*/u)), 

D(t*) = 9(t)/(h) = (II * Lh(lt*/u))/(214 

-4 
- I 

t* 

di*c(i*), 
0 

S(t*) = Ll(Zt*/u)/(Pt*) = ([Llr(lt*/u)]2)/(12t*)). 

(2.9) 

(2.10) 

(2.11) 

If we denote the edge of the square trees by u = a 42 then the nonoverlapping, 
close-packed area of N trees is No2. We use as a convenient dimensionless specific 
area variable 

T = V’/(Nu2) = (2/1)-l, (2.12) 

where p = na2 is the reduced density variable used by Hauge and Cohen. The 
variables C(t*), D(t*), and S(t*) depend parametrically upon 7, which of course is 
limited to values T > 1 in the NOV case, but can take on any values T > 0 in the 
OV case. 

Ensemble Averaging 

In relations (2.9)-(2.11) the angular brackets indicate petit-canonical ensemble 
averaging of dynamical variables of the form f(t) = f(t; r, Q”) giving the value 
of some dynamical variable f at time t along a wind-particle trajectory beginning 
at r in a scattering configuration specified by QN. (As previously indicated, we are 
simply omitting explicitly notating the dependence off on the initial wind-particle 
velocity u, and any associated averaging over u, due to the isotropy of our system.) 
For the interactions already specified we can write 

(f(t)> = Gfl 1 dQN p(QN) i drftt; r, QN) h(r, QN), (2.13) 

z - N.1 - j dQN fYQN) s dr h(r, QN), (2.14) 

where h(r, Q”) is the wind-particle-tree overlap function 

Nr, QN> = fi A,(r - Qd 
k=l 

(2.15) 

with A,(r - Qk) being unity if the point r lies outside the tree at Qr , zero if r lies 
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inside. The tree-tree overlap function P(QN) depends on the NOV-OV specification, 

pov(QN> = 1, 

PNOV(Q~) = tG GQ, - Qi), 
(2.16) 

with A,(Q, - Qi) equal to unity if trees i andj do not overlap, zero if they do, and 
with the product over all unordered pairs (ij) of trees. 

For computational purposes we write (2.13) in the form 

WD = WE (2.17) 

where 

F(t) = (ZJ-l j dQN j dr P(QN) F(t; r, QN), (2.18) 

FCC r, Q”) = f(t; r, Q”) Nr, QN), (2.19) 

R = (Z,V)-l j dQN j dr P(QN) h(r, QN), (2.20) 

2, = j dQN P(QN). (2.21) 

Z, is, of course, just the petit-canonical ensemble configurational integral for the 
system of N trees. The averages indicated by bars in (2.18) and (2.20) have the form 
of petit-canonical averages in the space (QN, r) with the unnormalized probability 
density P(QN) (independent of r) and differ from our original ( ) averages in that 
the wind-tree overlap function h(r, QN) is absorbed into the functions being 
averaged instead of being a factor in the probability density. 

Monte Carlo Procedure, NOV Case 

The Monte Carlo method of Metropolis, et al [5] was used to estimate the NOV 
averages (2.18) and (2.20) with fin (2.19) being the functions whose averages 
produce the variables C(t*), D(t*), and S(t*), as indicated in (2.9)-(2.11). The 
Monte Carlo method has been much reviewed [4,6], and will not be described 
again in detail here. In the NOV, or hard-square, case the tree-tree interactions 
differ from those in the hard-disk case only in that the metric used for the distance 
between squares i and j is 

Qij = I Xi - Xi I + I Yi - Yi I, (2.22) 

if (Xi, YJ = Qs are the Cartesian coordinates of the center of square i. The 
overlap function in (2.16) is then 

AdQ, - QJ = 4% - -& I + I ri - Yi I - 24, (2.23) 

5811713-12 
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where A(x) is the usual unit step function, equal to 0 for x < 0 and 1 for x 3 0. 
Our procedure is basically that used by a number of investigators for the hard 
disk system [4, 61, modified to use the metric (2.23) and to take account of the 
additional independent variable r. We take the area V to be square (hence the 
isotropy of the system) with its edges parallel to the diagonals of the oriented- 
square trees, and we use periodic boundary conditions. Close-packed square 
lattice configurations of hard squares are then possible for values of N given by 

N = 29 (2.24) 

with integral v. Note that I& and ncij) in (2.15) and (2.16) must be taken in the 
context of the periodic boundary conditions-see, for example, Ref. [4]. 

We generate by the standard Metropolis method a sequence of L, scattering 
configurations QaN = {Qoll , Quz ,..., Qahi}, 01 = 1, 2 ,..., Lc . Typically, Qoll is held 
fixed during this process, and between successive QaN each of the other N - 1 trees 
are cyclically given one or more trial displacements, with the usual reject-accept 
procedures. Then in each of these scattering configurations we select LT 3 1 
initial positions raB , /3 = 1, 2 ,..., L, of the wind-particle. We could have generated 
this sequence also by the Markov chain technique in which each r is obtained by 
making a small trial displacement from its predecessor. But because the wind- 
particle is a point particle, it is more efficient to select the LT points r,, randomly, 
uniformly, and independently in T/. Because of the periodicity of the system, this 
is equivalent to the Markov chain method of trial displacement from the previous 
point, but with the displacement being taken randomly and uniformly within a 
square of area I’ centered at the previous point. It is then not difficult to show that 
the Monte Carlo procedure just described leads to 

F(t) - (.wTY 5 2 F,,(t), F&) = W; ruB , QaNL (2.25) 

LC LT 

g - (-MT)-’ 1 1 K, , 

a=lB=l 
(2.26) 

In these equations, - means stochastic convergence as LC + cc of the Monte Carlo 
estimate on the right side to the ensemble average defined in (2.18) and (2.20). 

It is evident that in the NOV case 

independent of QN, so that (2.20) becomes 

rr,,, = 1 - 7-l. (2.28) 

V-l dr h(r, QN s ) = 1 - 7-1, (2.27) 
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Thus it is not necessary to make the Monte Carlo estimate (2.26) of R, but we 
nevertheless do so since (1) it does not appreciably lengthen the calculation; 
(2) comparison of the estimate with the exact value (2.28) is a useful check on the 
calculation; and (3) the fluctuations in the estimatesF(t) and B are usually positively 
correlated in such a way that estimate (2.17) for the desired function is of smaller 
variance when (2.26) is used instead of (2.28). 

Monte Carlo Procedure, OV Case 

When the scattering trees are allowed to overlap arbitrarily, P(QN) = 1, the 
tree configuration space loses entirely the labyrinthine characteristics of the 
hard-core system, and (2.18) (2.20), and (2.21) become 

j?(t) = T/-‘N+l’ SdQNJ‘ dr W; r, QN), (2.29) 

R = V-cN+l) jdQ” jdrh(r,QN), (2.30) 

z, = VN. (2.31) 

In this case it is appropriate to again use (2.25) and (2.26) to estimate F(t) and 17, 
but now choosing the sequence of scattering configurations QaN, 01 = 1,2,..., Lc , 
randomly, uniformly, and independently in the 2N-dimensional hypercube VN. 
This is done, of course, by choosing in each such configuration QaN the individual 
tree positions QEi randomly, uniformly, and independently in the square V, or in 
turn, each of the two components (XEi, Y,J of Q, randomly, uniformly, and 
independently in the interval (0, W2). (The calculation is, of course, carried out 
in reduced coordinates qi = Qi/V1’2, SO that the square V is transformed into the 
unit square.) Using (2.15) in (2.30) we obtain directly 

R = I/-‘“+” jdr cl jdQ,A,(r - Qk) 

s 

(2.32) 
= V-‘N+l) dr (V - $)N = (1 - N-+l)N - exp(-T-l), 

so that in the OV case also we have an exact value of B with which to compare our 
Monte Carlo estimate. 

Dynamical Calculation 

For each choice of a nonoverlapped initial position rus in a given scattering 
configuration QaN we determine the initial velocity u,, according to the specifi- 
cations of the realization (i.e., either randomly using a specified pseudorandom 
number generator, or always in a specified one of the four possible directions), 
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and then develop the trajectory from collision to collision. A table of values of t* 
is specified as part of the input data for the realization, and as a given value of r* is 
passed along the trajectory, the functions F(t; rarB , QuN) corresponding to @$I), 
(2.10), and (2.11) are calculated, using the interpolated values of u(t) and or(t), 
and their running sum accumulated. Actually, of course, as is generally done [~-IO] 
in molecular dynamics calculations of this type, we can use the time-translation 
invariance of equilibrium averages of the form (u(t,) . dr(t, + t)) (i.e., the fact that 
such an average is independent of to) in order to increase the precision of the 
estimates, especially at the smaller values of t*. 

Experimental Errors 

As usual it is helpful to regard the Monte Carlo procedure as constituting an 
experimental observation of the properties of interest, and to enquire as to the 
possible sources of experimental error. Leaving aside “apparatus” errors, such as 
actual computing machine (CDC 6600) errors and undetected programming errors, 
the principal sources of error in our “experiment” are expected to be due to (1) the 
statistical fluctuation in the results due to the finite values of Lc , the total number 
of scattering configurations calculated; (2) the inadequacies of the various pseudo- 
random number generators used; and (3) the finite period and associated finite 
values of N, the number of trees, used. Because of the exceedingly simple dynamics, 
the wind-particle trajectories are computationally time-reversible to a very high 
degree of precision, so that we expect no errors from that source. 

Statistical Errors 

In the NOV case we estimate the statistical errors in our estimates F(t) and B 
by the usual “coarse-graining” procedures described in Refs. [4] and [ll]; that is, 
the sequence of Lc scattering configurations is broken up into a number of sub- 
sequences, and the variances and covariances of F(t) and i7 estimated in the usual 
way from the corresponding values in the sub-sequences. In the OV case, each 
scattering configuration is theoretically (i.e., aside from correlations inherent in the 
pseudo-random number generators) independent, so that no coarse-graining is 
necessary. However, we customarily carry out the coarse-graining anyway, in order 
to test the adequacy of the pseudorandom number generators. 

Pseudorandom Number Generators 

We have used here the same generators as in the calculations of the hard-disk 
equation of state [ 11, 121. The programming permits any combination of generators 
to be used for the choices of (1) the initial wind-particle velocity (which can also be 
specified to be taken always in the same given direction); (2) each of the two 
components (separately) of r, the initial wind-particle position; (3) each of the 
two components (separately) of the positions Qai of the trees i = 2, 3,..., N in the 
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OV case, or of the trial displacement of the chosen tree in the NOV case; and 
(4) the tree which is to be given the trial displacement in the NOV case (but in all 
of the calculations reported here we “move” the trees in the cyclic order 2, 3,..., N, 
rather than in random order; see Ref. [4]). We have little to add here to the previous 
discussions [ll, 121 of the reliability of the random number generators. The Mij 
generators (terminology as in Ref. [l 11) have been criticized [13] because they 
produce certain regular distributions of points in the unit square and higher- 
dimensional hypercubes. This behavior is well known to us [I 1, 121, and we have 
not been able to detect any gross distortion of Monte Carlo results due to these 
characteristics, when the generators used have spatial resolution [l l] not too far 
from the optimum possible value. It might be noted, in this connection, that the 
systematic use of regular arrays of sampling points, instead of “randomly” chosen 
ones, has been suggested [14]. Beyer, Roof, and Williamson [15] have extended the 
determination of the lattice structure of Mij generators to the unit cubes of dimen- 
sions 3-6. 

We have varied the assignment of our several generators among the functions 
described above, both “randomly” and more or less systematically, and have 
detected no gross associated variability in the present results. For the most part the 
critical parts of the NOV calculations are so similar to the previous hard disk 
calculation in their pseudorandom number usage as to give us high confidence in 
the NOV results. The usage in the OV case is somewhat different, and here we are 
encouraged by the agreement, to be discussed below, of our estimates of R with 
the exact value (2.32) as well as by the results of the statistical tests [ll] on the 
randomness of the coarse-grained observations. 

Periodicity 

The source of error of most concern to us, because of its possible systematic 
effect, is the finite period of the systems which are feasibly studied. Assuming that 
other sources of error, such as those already discussed, are negligible, the Monte 
Carlo methods are expected to give results which are exact for a system of given 
size, and therefore they are expected to depend systematically, although not 
necessarily smoothly [16; 4, p. 1511 on the size N chosen. In the case of the 
equilibrium properties of the hard-disk system, except in the vicinity of the apparent 
fluid-solid phase transition, the size dependence becomes negligible (with presently 
achievable precisions) for systems of a few hundred molecules. Transport properties 
present a more difficult problem, since we deal here (in the framework of the 
autocorrelation function formulation) with equilibrium averages of time-dependent 
variables for individual molecules. 

For very small wind-tree systems, or even for quite large systems at very low 
density, perhaps the most gross effect of the finite period is the occurence of 
collisionless trajectories. Suppose, for simplicity, that the initial velocity of the 
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wind particle is in the f x-direction. Then a collisionless trajectory requires that 
there be a band of width greater than 2a across the area V, in the x-direction, 
which is empty of the centers Qi of any of the trees. The probability that this is the 
case is easily found to be asymptotically exp(-21~zN1~z+~z) in the OV system 
(and smaller in the NOV system). Note that for given N and T, this is a fixed 
nonvanishing probability, and that any such trajectory has S(t*) = t*, which is 
divergent with t*. Thus, strictly speaking, any finite periodic system has S(t*) 
divergent with t*. However, the statistical weight of such trajectories is seen to 
vanish exponentially with N1/2, and for large enough N we will expect to observe 
them only rarely, and indeed in our largest systems we have never observed such a 
trajectory. For a smoother extrapolation to infinite N (at fixed V/Na2 = T), we 
customarily arbitrarily include such trajectories in the h(r, Q”) = 0 region. 

There are, of course, other similarly pathological trajectories, with less disastrous 
effects on S(t*), in which the full period of the system is seen in just a few collisions. 
Clearly, such trajectories also have a rapidly vanishing statistical weight with 
increasing N. However, for fixed N and increasing t*, it is clear that at least at low 
enough density the root mean square displacement will eventually exceed the period 
of the system. When this occurs, we are studying a different system than that of 
Hauge and Cohen. In terms of our variable S(t*), this implies that we should require 
S(t*) < 2N/(t*T) or 

t* < ~N/@T). (2.33) 

In this connection it is helpful to recognize that our scaling is such that in the low 
density limit of the normal diffusion case (NOV), S - 2 as t* + co, so that in 
this case periodicity effects might be expected to be noticeable for t* > N/T. In the 
abnormal OV case, S+ 0 as t* + co, according to Hauge and Cohen, so that we 
can expect to calculate to somewhat longer times in the OV case before feeling the 
period of the system. In both cases, of course, there is some reason to feel that for 
times only moderately greater than the critical value given in (2.33), the periodicity 
effects may be slight, since one might expect that a typical trajectory will on the 
average begin to explore a different part of the system upon first completing a 
period in one of the two directions. 

For comparison with (2.33) we have Hauge and Cohen’s estimate [3, Eq. 9.51 
that in the OV case abnormal diffusion effects will be felt only for 

t* > f eXp (g T). 

As we will see, S(t*) passes through a maximum of order unity as the abnormal 
diffusion begins to be manifest. Computer limitations restrict us to values of N 
of a few thousand, so that comparison of (2.34) and (2.33) indicates that we would 
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expect to be able to detect abnormal diffusion only at relatively high densities, 
say T < 10. Actually, (2.34) will be found to be somewhat overly restrictive, but 
the general conclusion is basically correct: Periodic effects and computer limitations 
restrict our ability to investigate the long-time behavior to relatively high densities. 

As usual, our principal control over errors due to small system effects is to 
compare the results of calculations over a wide a range of values of N as possible. 
In addition, we have the criterion (2.33) for the average trajectory, and we also 
specifically observe the fraction of trajectories, as a function oft*, either of whose 
two components of &(t*) at t* first exceeds in magnitude the half-period of the 
system. 

3. RESULTS 

We limit our presentation here to calculations carried out for both OV and 
NOV systems at T = 2, concentrating mostly on the largest systems studied, 
N = 8192. We are confident that at this density the NOV hard-square systems are 
in the fluid phase, based upon, among other reasons, the appearance of “snapshots” 
such as Fig. 1 (but for the NOV system, of course). From the machine results for 
the hard-disk system, where an apparent fluid-solid phase transition occurs at about 
T = 1.3, we expect that there may be a similar transition in the hard-square system. 
But to date we have not studied the NOV wind-tree model at 7 < 2. NOV results 
at lower densities, and OV results over the entire range of densities will be presented 
in a subsequent paper. The equilibrium properties of the oriented hard-square 
system are generated as a by-product of the NOV wind-tree calculations, and we 
hope to report on these also at a later time. 

Velocity Autocorrelation Function 

Our calculated velocity autocorrelation function C(t*) is shown in Fig. 2. Both 
the NOV and OV functions show an approximately exponential decay at early 
times, t * < 1. (It may be worth pointing out here that the dilute gas or Boltzmann 
velocity autocorrelation function is C(t*) = exp(-t*)). At somewhat larger times 
<t& w 2.7, t& m 3.5) however, C(t*) becomes negative. The negative phase is 
much deeper in the OV case, with both cases showing a broad flat minimum some- 
where near t* = 5. At still longer times C(t*) appears to approach zero from 
below, but at about t&,, = 10 and t& = 20 the “noise” begins to overlap the 
t* axis, and we obviously can not be certain that the true C(t*) approaches zero 
from negative values. 

DifSusion Function 

The calculated diffusion function D(t*) is shown in Fig. 3. The Hauge and Cohen 
prediction D&t*) -+ 0 as t* -+ co can hardly be said to be either supported or 
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FIG. 2. The velocity autocorrelation C(t*) vs t* in the NOV and OV cases at 7 = 2.0. The 
plotting symbols cover the range of several realizations with N = 512, 2048, and 8192. The line 
is the Boltzmann approximation exp( - t*). 

contradicted, so large is the scatter in Dov(t*) for t* > 100. We do note a signif- 
icant difference between the NOV and OV results for t* = 10 to 100, where DNoV 
is almost constant while Dov is definitely decreasing. And even at large values of t*, 
Dov is clearly significantly smaller than DNoV . The large scatter in D(t*) for large t* 
is of course just the amplified “noise” from C(t*), since from (2.10) we see that 
D(t*) is just the integral of C(t*). For Dov(t*) to approach zero requires that the 
area under the initial positive phase of Cov(t*) be just exactly counterbalanced 

FIG. 3. The diffusion function D(i*) vs t* in the NOV and OV cases at 7 = 2.0 as calculated 
for N = 8192. Occasional error symbols extending f one estimated standard deviation from the 
mean are shown in the regions where they exceed the size of the plotting symbols. 
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by the area of the long negative tail. As the cancellation becomes nearly complete, 
small absolute fluctuations in Co, become large relative fluctuations in Dov . In 
the NOV case there is evidently little cancellation, but still the fluctuation in 
DNov(t*) is seen to become larger as t* increases- this is due to the accumulation 
of fluctuations as the t* integration is extended to very long times, as well as to a 
slow increase in the fluctuation in C(t*) as t* increases. 

i------L 
Id’ IO0 IO’ IO2 IO3 IO4 IO5 

t” 

FIG. 4. The reduced mean square displacement function SW I* in the NOV and OV cases 
at 7 = 2.0, as calculated for N = 8192. The estimated standard deviations are everywhere much 
smaller than the plotting symbols. 

Reduced Mean-Square Displacement 

The reduced mean-square displacement S(t*) is shown in Fig. 4. Note that the 
time scale here extends a decade further than in Fig. 3, and yet the fluctuations are 
too small to show on the scale of the figure. This is a property of the mean-square 
displacement function. Note that from (2.3), (2.8), (2.10), and (2.11) we have indeed 

S(t*) = 4t*-’ j’* D(i*) dZ* 
0 (3.1) 

= 2&t*)-l (u . ,:‘d2* dr(li*/u)); 

but we calculate S(t*) not from (3.1) but from (2.11). The equivalence of the means 
of these two dynamical variables is a consequence of the time-translation invariance 
of the equilibrium ensemble average, but their fluctuations are different. We have 
also calculated the average in (3.1), as well as the similar alternative expression 
for D(t*), 

D(t*) = $dt*S(t*)/dt* = (21u)-l (u(lt*/u) * A@*#), (3.2) 
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because comparison of the estimate (3.1) with (2.1 l), and (3.2) with (2.10) is a 
check upon convergence of the Monte Carlo average to the desired equilibrium 
ensemble average. The estimate (3.1) becomes very noisy at the largest t* values; 
the fluctuation may in fact be large compared to the average value, in which case 
the comparison is not very meaningful. But at smaller values of t* the agreement 
is quite good, and is additional evidence for the reliability of the Monte Carlo code 
and procedure. We postpone a detailed discussion of these matters to a subsequent 
paper. 

OV Case 

Returning to Fig. 4, it is seen that on this log-log plot Sov(t*) is closely approx- 
imated by the straight line, which has been drawn “by hand” through the data. 
The equation of the line is approximately 

s 0” - (33/t*)0.345. (3.3) 

It is possible that a closer examination of the data may indicate that some of the 
small deviations from strict linearity are statistically significant; this is not a com- 
pletely simple question, since the fluctuations in S(t*) for two not-too-widely- 
separated values of t* appear to be strongly correlated (as might be expected). 
The OV results at still higher densities, to be reported in detail on another occasion, 
are similar in fitting a fractional power law over a substantial range of large t*, 
with the power of t* becoming larger in magnitude as the density increases. At 
T = 0.5, it has been possible to follow S(t*) down to values less than 10-3, from a 
maximum value at small values of t* which is still of the order of unity. If (3.3) 
represents the correct asymptotic behavior, then it follows from (3.2) and (2.10) 
that C(t*) does indeed approach zero through negative values at long times. 

Periodicity efects. As to the possible effects of the finite period of our N = 8 192 
system on these results, we note first that (3.3) and (2.33) together imply that the 
root-mean-square displacement (dr2)1/2 would become equal to the period only 
for t* M 1.5 x 105, a value considerably larger than the maximum value 25 000 
of t* in Fig. 4. At t* = 25 000, (dr2)li2 = 0.55 period; slightly more than 60 % 
of the trajectories were observed to move more than a half-period from their initial 
point. On the other hand, the point t * = 2500 is well within the apparently linear 
region of log Sov vs log t*; at this point (dr2)lj2 m 0.26 period, and only about 
5.4 % of the trajectories have moved through a half-period. Inspection of the OV 
entries in Table I will give some idea of the approximate lack of dependence of 
S(2500) on the size of the system (provided it is not too small) and on the choice of 
pseudo-random number generators. 

Conclusions. These considerations, and the similar OV behavior at higher 
densities, where the diffusion is more restricted and the root-mean-square dis- 
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placements are still smaller fractions of the period, lead us to believe that the OV 
behavior in Fig. 4 is in fact characteristic of a thermodynamically large system. 
The apparent validity of the extrapolation of (3.3) to infinite t” leads us to claim 
that, to the extent reasonably possible in calculations of this type, we have con- 
firmed Hauge and Cohen’s prediction that Sov(t*) + 0 as t* + co : the abnormal 
diffusion exists. Our apparent fractional power law (3.3) is different from the 
asymptotic form 

so*> - 37/ln t* (3.4) 

found by Hauge and Cohen [3, Eq. 9.41, due presumably to the effects of higher 
order terms in the density than those retained in the theoretical analysis. 

NOV Case 

The NOV results in Fig. 4 clearly show a quite different behavior. They are 
certainly very consistent with, but do not decisively prove, the Hauge-Cohen 
conclusion of normal diffusion in this case. Our reason for hedging a bit here is the 
very slight decrease of SNOV(t*) in Fig. 4 for t* > 100. We cannot exclude the 
possibility that in the NOV case, S(t*) + 0 on an even much longer time scale than 
that observed for the OV case. There is, of course, no known theoretical basis for 
such an assumption. The Hauge-Cohen theory does offer a possible explanation 
for the slight decay of SNov(t*), with eventual approach to a nonzero limit, in 
that the same diagrams which cause the “divergence” So, -+ 0 make finite 
contributions to SNov , and may well have a similar time-dependence. 

Periodicity eflects. Some of the long-time decay in S,ov may possibly be due 
to periodic effects. The NOV diffusion is freer, as evidenced by the almost order-of- 
magnitude greater S(25 000); at t* = 25 000, (LIP)~/~ R!, 1.6 period and essentially 
100 % of the trajectories have seen a half-period of the system; even at t* = 2500, 
(Ar2)1/2 w 0.5 period. Again, Table I gives some quantitative comparisons of 
values S(2500) obtained with different values of N and with different random 
number generators. 

Conclusions. Our “best guess” at this time is &&co) = 0.93, corresponding 
to DNov( co) m 0.23. This can be compared with the Hauge-Cohen [3, Table I] 
value 0.28, which of course neglects density corrections beyond the first. Exact 
agreement at this relatively high density is not to be expected, but it is perhaps 
interesting that the first correction accounts for so much of the reduction from the 
low density limit 0.5. We hope to make a more quantitative comparison with the 
theoretical first-order correction term when our calculations at lower density are 
more completely analyzed. 
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Observed R vs Exact Value 

We have already given in (2.28) and (2.32) the exact expression for R as a 
function of T and N. One can straightforwardly find the following theoretical 
expressions for the Monte Carlo sampling variance of R, in which (H) denotes the 
exact value of R: 

&@) = {<H)ov[l - <H)ov1 + G - 11 @MJW,), (3.5) 

62 = (1 - 2y)N(l - 4y) - (1 - y)2” 

+ 4y(l - 2yy f ( N ) af/(j + l)“, 
j=o J 

y = (NT)-l, (3.6) 

Ly. = Y/U - 31, 

&,v(~) = W)NOV[~ - <ffhwI/&~~). (3.7) 

For large values of N, suitable asymptotic approximations to (3.6) are of course 
used for actual calculations; the quantity @ is O(N-l). For large enough values of 
LC we expect the normalized deviation 

u = (R - (H))/a(iT) (3.8) 

to be approximately normally distributed with zero mean and unit standard 
deviation for an ideally random Monte Carlo procedure. Table I gives a number of 
observed values of this statistic, which are seen to conform quite well to ideal 
behavior. These results increase our confidence in the adequacy of the pseudo- 
random number generators used in this investigation. 
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